Train Scheduling with Deep Q-Network: A Feasibility Test
نویسندگان
چکیده
منابع مشابه
Variational Deep Q Network
We propose a framework that directly tackles the probability distribution of the value function parameters in Deep Q Network (DQN), with powerful variational inference subroutines to approximate the posterior of the parameters. We will establish the equivalence between our proposed surrogate objective and variational inference loss. Our new algorithm achieves efficient exploration and performs ...
متن کاملHow to Train Your Deep Neural Network with Dictionary Learning
Currently there are two predominant ways to train deep neural networks. The first one uses restricted Boltzmann machine (RBM) and the second one autoencoders. RBMs are stacked in layers to form deep belief network (DBN); the final representation layer is attached to the target to complete the deep neural network. Autoencoders are nested one inside the other to form stacked autoencoders; once th...
متن کاملDeep Attention Recurrent Q-Network
A deep learning approach to reinforcement learning led to a general learner able to train on visual input to play a variety of arcade games at the human and superhuman levels. Its creators at the Google DeepMind’s team called the approach: Deep Q-Network (DQN). We present an extension of DQN by “soft” and “hard” attention mechanisms. Tests of the proposed Deep Attention Recurrent Q-Network (DAR...
متن کاملImplementing the Deep Q-Network
The Deep Q-Network proposed by Mnih et al. [2015] has become a benchmark and building point for much deep reinforcement learning research. However, replicating results for complex systems is often challenging since original scientific publications are not always able to describe in detail every important parameter setting and software engineering solution. In this paper, we present results from...
متن کاملIntelligent Train Scheduling on a High-Loaded Railway Network
We present an interactive application to assist planners in adding new trains on a complex railway network. It includes many trains with different characteristics, whose timetables cannot be modified because they are already in circulation. The application builds the timetable for new trains linking the available time slots to trains to be scheduled. A very flexible interface allows the user to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2020
ISSN: 2076-3417
DOI: 10.3390/app10238367